
Chaos Engineering
Adoption Guide
Your guide to implementing
Chaos Engineering within
your organization

2

Chaos Engineering Adoption Guide

Welcome to Chaos Engineering with Gremlin!

This document will serve as your guide to implementing Chaos
Engineering and Gremlin within your organization. From
educating your team on the principles of Chaos Engineering
to running automated experiments, we’ll walk through each
stage of the adoption process in order to ensure a smooth and
successful rollout. We’ll explain how to:

•	 Prepare your organization for Chaos Engineering

•	 Deploy Gremlin to your systems

•	 Create and execute chaos experiments safely and
confidently

•	 Integrate Gremlin into the workflow of your engineering
teams

•	 Automate your chaos experiments as part of your
CI/CD pipeline

At the end of this guide, Gremlin won’t just be another
bookmark in your engineers’ browsers, but an integral part of
your organization’s culture and everyday DevOps practices. We
also provide a checklist at the end of each chapter to help you
track your progress.

This guide assumes that your organization has already
purchased Gremlin and understands the fundamentals
of Chaos Engineering. If your organization is unaware of
Chaos Engineering and the benefits it can provide, please
read our guide to championing Chaos Engineering within
your organization. If your organization hasn’t yet purchased
Gremlin, request a demo.

Introduction

By following
this guide, you’ll
successfully increase
your organization’s
reliability with minimal
effort and risk.

https://gremlin.com/media/champion-playbook
https://gremlin.com/media/champion-playbook
https://www.gremlin.com/demo/

3

Chaos Engineering Adoption Guide

Before starting with Gremlin, there are steps we need to take
in preparation for running chaos experiments.

The overarching goal of Chaos Engineering is to improve the
reliability of our applications and systems by testing how
they handle failure. To do this, we need to take a structured
and well-organized approach with clearly defined objectives
and key performance indicators (KPIs). Running random
experiments without any direction or oversight won’t yield
actionable results and will put our systems at unnecessary
risk. To achieve this, we’ll move through the following steps:

1.	 Define the objectives and KPIs we want to achieve through
chaos experimentation

2.	 Select and prioritize the system(s) we want to target for
initial experimentation

3.	 Identify and track metrics that will help us track progress
towards our objectives

4.	 Prepare our teams for running chaos experiments

1. Define Your Reliability Objectives
and KPIs

To meet the high-level goal of improved reliability, we need to
guide our Chaos Engineering adoption process using more
granular objectives. These objectives will likely vary between
business units.

Prerequisites

4

Chaos Engineering Adoption Guide

The executive team will be more interested in long-term
business-oriented objectives, such as:

•	 Ensuring successful new product launches

•	 Avoiding costly and damaging downtime, which can drive
down customer satisfaction and product usage

•	 Reducing the number of delayed releases due to reliability
and stability problems

•	 Reducing the amount of maintenance work, rework and
technical debt

•	 Increasing engineering productivity and change velocity

The engineering team will be more interested in short-term
operational objectives, such as:

•	 Limiting the amount of downtime and time spent
firefighting

•	 Reducing the number of on-call incidents and late night
pages

•	 Reducing the rate of failures introduced by changes

•	 Increasing the speed of application migrations by
proactively testing reliability

When starting your Chaos Engineering journey, consider which
objectives are important to your organization. These will guide
the adoption process and allow you to track your progress
towards greater reliability. Note that this list is by no means
exhaustive, and should be taken more as a starting point.

https://aws.amazon.com/partners/success/dpg-media-gremlin/
https://www.gremlin.com/blog/the-cost-of-downtime/
https://www.gremlin.com/customers/under-armour/

5

Chaos Engineering Adoption Guide

Identifying Reliability Objectives Using
Past Incidents

If you’re not sure which objectives to track, think back to any
incidents your organization experienced over the past year.
Ask questions such as:

•	 What was the nature of the incident? Was it a hardware
failure? A problem with a downstream dependency? An
accident caused by a team member?

•	 What systems were affected? Did they become temporarily
unavailable or go completely offline? How long did it take to
restore them to normal service?

•	 What was the impact on customers? Did they experience
downtime or data loss? Did your customer support team
see a corresponding increase in tickets?

•	 How quickly was your response team alerted to the
incident? Was it detected by an automated monitoring
solution, or did someone notice it? Did you have an on-call
crew ready to go, or did you need to scramble a response
team?

•	 How long did it take to resolve the incident? Did you have
any automated systems in place that resolved or mitigated
the failure? Did you have to restore from a backup?

•	 How was the problem resolved? Was it an ad-hoc fix that
only exists in production, or did you merge the fix back into
your codebase? Did you document the fix?

•	 What organizational changes were made as a result?
Was anyone blamed for the incident? Were policies
implemented to prevent the problem in the future?

6

Chaos Engineering Adoption Guide

Focus on the questions that were either left unanswered, or
that your teams struggled to answer. For example, if we had
an automated monitoring system in place that failed to detect
the incident and notify the on-call team, one of our objectives
might be to test our alerting thresholds by reproducing the
conditions leading up to the incident. Not only will this address
the problem, but it teaches us more about our monitoring
system and how to optimally tune our thresholds.

2. Track Progress Towards Your
Objectives

To determine whether our fixes are directing us towards our
objectives, we need to measure and track the internal state
of our systems. We can do this using observability, which is
the measure of a system’s internal behaviors based on its
outputs. Gathering observability data lets us quantify different
attributes of our systems such as performance, capacity, and
throughput. This data is useful not just for understanding how
our systems are operating in the current moment, but we can
compare it against historical data to see how our systems
have changed over time.

For example, if we implement a change that affects
application performance, we can compare our metrics
from before and after the change to quantify the impact on
latency, throughput, etc. This helps us stay aligned with our
objectives, avoid creating wasted effort, and provide the best
value to the business.

https://www.gremlin.com/blog/charity-majors-closing-the-loop-on-chaos-with-observability-chaos-conf-2018/

7

Chaos Engineering Adoption Guide

Collecting the right metrics can be challenging. Modern
systems are complex, and collecting every bit of observability
data can quickly lead to information overload. Even just
tracking the four golden signals—latency, traffic, error rate, and
resource saturation—can be overwhelming in large systems.

Focus on collecting metrics that relate directly to your
objectives. For business-oriented objectives, these might
include metrics related to business efficiency and customer
satisfaction, such as:

•	 Net Promoter Score (NPS) and Social Promoter Score
(SPS): how satisfied customers are with our service, and
how likely they are to promote us.

•	 Meaningful availability: how our customers perceive our
service’s availability.

•	 Recovery Time Objective (RTO) and Recovery Point
Objective (RPO): how long it takes our IT and business
activities to recover after a disaster, and the amount of
data we can tolerate losing in a failure.

Without observability, you don’t have ‘chaos
engineering’. You just have chaos.”

Charity Majors, Closing the Loop on Chaos with Observability, Chaos Conf 2018
 “

https://landing.google.com/sre/sre-book/chapters/monitoring-distributed-systems/#xref_monitoring_golden-signals
https://failover-conf.heysummit.com/talks/slowdown-is-the-new-outage/
https://www.youtube.com/watch?v=HzGqat_qCik&feature=emb_title

8

Chaos Engineering Adoption Guide

For engineering-oriented objectives, focus on metrics related
to application and infrastructure health, such as:

•	 Service Level Objectives: the target level of availability
over time for our systems. These help define the standard
of service that our customers should expect, and are
therefore important guides for both the engineering team
and the business.

•	 Golden signals: latency, traffic, error rate, and resource
saturation.

•	 Mean Time Between Failures (MTBF): the average amount
of time between outages. A low MTBF indicates that our
systems experience frequent failure.

•	 Mean Time to Detection (MTTD): the average gap in
time between when an incident actually starts and when
we detect it. A low MTTD means we have an effective
monitoring strategy in place and are quickly made aware of
problems.

•	 Mean Time to Resolution (MTTR): the average gap in time
between the start of an incident and when it’s resolved. A
low MTTR means our teams are effective at detecting and
resolving incidents.

https://www.gremlin.com/blog/defining-dashboard-metrics/#service-level-objective-slo
https://landing.google.com/sre/sre-book/chapters/monitoring-distributed-systems/#xref_monitoring_golden-signals

9

Chaos Engineering Adoption Guide

3. Prioritize Your Targets

Now that we know our objectives and KPIs, we need to identify
the parts of our infrastructure that directly impact those KPIs.
This is where we’ll run our chaos experiments using Gremlin.
By running experiments on these systems and seeing how our
KPIs change, we can plan and implement fixes more effectively.

If your organization experienced an incident within the past
year, start by trying to replicate that incident. Identify the
systems that were involved (or their test/staging equivalents),
and start thinking about the conditions that caused the
incident. If you had multiple incidents, choose the one that
affected the greatest number of customers, generated the
most after-hour alerts, or was the most expensive to resolve.

We also recommend targeting systems that are critical to your
business. As an example, an unreplicated database is a critical
component since a failure risks bringing down any applications
that depend on it. Running chaos experiments on essential
infrastructure might seem dangerous, but it will provide far
more value than experimenting on non-essential components.
Not only will it help us find and fix issues with these systems
faster, but it demonstrates the value that Chaos Engineering
provides to the business. You can always experiment on non-
essential systems to build confidence, but this won’t provide as
much value.

If you’re still not sure where to start, use our reliability
calculator to grade the reliability of each of your services,
and choose the service that results in the lowest grade.

https://www.gremlin.com/reliability-calculator/
https://www.gremlin.com/reliability-calculator/

10

Chaos Engineering Adoption Guide

4. Prepare Your Teams

Much like DevOps, the practice of Chaos Engineering is rooted
in the engineering team, but involves all other parts of the
organization. When we inject failure into a system, we risk
impacting everyone who uses that system, whether it’s internal
users or customers.

As an example, consider a relatively simple experiment:
consuming 1 GB of RAM on a single host in a cluster. This
might seem fairly harmless at first, but then we find out that
this exceeded an alerting threshold, triggering a wave of
notifications that sends our SREs into response mode. And if
this is a Kubernetes cluster, our innocuous experiment could
prevent applications from deploying onto the node, causing a
completely unintended kind of failure.

Before we start performing chaos experiments, we want to
help educate our teams on what Chaos Engineering is, its
principles, and its risks. We want to involve the owners of
the systems that we’re testing in helping design and execute
experiments, as well as be available in case the systems fail.
As our practice expands throughout the organization, we
want to inform non-engineering teams who may be affected
by experiments including support teams, executive teams
(especially the CTO), and developer advocacy teams.

https://www.gremlin.com/community/tutorials/chaos-engineering-the-history-principles-and-practice/
https://www.gremlin.com/community/tutorials/chaos-engineering-the-history-principles-and-practice/

11

Chaos Engineering Adoption Guide

If you’re unsure of how to go about this process, read our guide
to championing Chaos Engineering within your organization.
You’ll find additional tips on how to discuss Chaos Engineering
with non-technical users and get their involvement.

Checklist

 	 List the technical and business objectives you want 	
	 to achieve with Chaos Engineering

 	 Determine which KPIs and metrics you’ll need to 		
	 track progress towards your objectives

 	 Identify and prioritize the target(s) you want to attack

 	 Create a recovery plan in case of unexpected failure

 	 Inform your organization about Chaos Engineering 	
	 and your planned experiments

https://gremlin.com/media/champion-playbook
https://gremlin.com/media/champion-playbook

12

Chaos Engineering Adoption Guide

Now that you’ve laid the groundwork, it’s time to start planning
your first experiment. As we’ve established, running a chaos
experiment isn’t as simple as running a random attack against
a random system. Experimentation follows a thoughtful,
controlled, scientific process.

When developing an experiment:

1.	 Start with a hypothesis stating the question that you’re
trying to answer, and what you think the result will be. For
example, if your experiment is to test whether your web
server can handle increased load, your hypothesis might
state that “as CPU usage increases, request throughput
remains consistent.”

2.	 Define your blast radius. The blast radius includes any
and all components affected by the test. A smaller blast
radius will limit the potential damage done by the test.
We strongly recommend you start with the smallest blast
radius possible. Once you are more comfortable running
chaos experiments, you can increase the blast radius to
include more components.

3.	 Monitor your infrastructure. Determine which metrics will
help you reach a conclusion about your hypothesis, take
measurements before you test to establish a baseline, and
record those metrics throughout the course of the test
so that you can watch for changes, both expected and
unexpected.

4.	 Run the experiment. Make sure you have a way to stop the
experiment and revert any changes it introduced before
you begin the experimentation process.

5.	 Analyze the data and form a conclusion. Does it confirm or
reject your hypothesis? Use the results to address failure
points in your systems and refine your experiment.

Running
Your First
Experiment

13

Chaos Engineering Adoption Guide

Gremlin provides Scenarios, which let you record your
hypothesis, metrics, and results in the Gremlin web app.
Additionally, you can halt any active attacks in case of a
problem.

Structuring Chaos Experiments Around GameDays

A GameDay is a dedicated period of time for teams to focus
on running a chaos experiment, observe the results, and
determine which actions to take in order to improve reliability.
GameDays allow teams to run tests, respond to any issues
that arise, and provide insights or feedback in a collaborative
setting. GameDays typically run for 2–4 hours and involve the
team of engineers responsible for the system being tested, but
often include members from both sides of the organization.

GameDays provide a structured approach to running chaos
experiments. While they’re often used to run large-scale tests
impacting production systems, teams that are just starting out
should follow this same approach to familiarize themselves
with the process. Not only does it allow your teams to practice
collaborative Chaos Engineering, but it encourages the use of
GameDays as a regular practice.

https://www.gremlin.com/docs/scenarios/overview/
https://www.gremlin.com/community/tutorials/how-to-run-a-gameday/

14

Chaos Engineering Adoption Guide

The basic steps involved in running a GameDay are:

•	 Identify your target systems (see the Prioritize Your Targets
section above)

•	 Schedule a time and location for the GameDay

•	 Scope out your chaos experiments

•	 Execute your experiments

•	 Recap the experience and convert the results into action
items

To learn more about GameDays, read our tutorial on
How to Run a GameDay.

Deploy Gremlin

Next, we’ll install the Gremlin client onto our target systems.
This will let us target these systems for attack using the
Gremlin web app, the Gremlin command-line client, and the
Gremlin API. See our documentation for information on how
to install the Gremlin client onto your infrastructure and
applications.

For your first experiment, we recommend only installing the
Gremlin client onto the systems that you plan on testing as
part of your experiment. While Gremlin gives you the ability
to halt any attacks, we want to reduce the risk of running an
attack on the wrong systems as much as possible. Once you
become more comfortable with using Gremlin, you can deploy
the client to the rest of your infrastructure.

https://www.gremlin.com/community/tutorials/how-to-run-a-gameday/
https://www.gremlin.com/docs/clients/overview/
https://www.gremlin.com/docs/infrastructure-layer/installation/

15

Chaos Engineering Adoption Guide

To verify that your systems are connected to the Gremlin
Control Plane, log into your account at https://app.gremlin.
com and navigate to the Clients page. This will list each
client in your Gremlin Control Plane. If you are having trouble
getting the client to start or connect, see our infrastructure
troubleshooting guide or contact Gremlin support through the
Gremlin web app.

Run the Experiment

Now that you’ve outlined your experiment and deployed
Gremlin to your systems, we’ll walk you through running an
experiment. There are four actions we’ll focus on: establishing
a baseline, running attack(s), analyzing the results, and
repeating the experiment after implementing a solution.

1. Establish a Baseline

To measure how our systems change during an experiment,
we need to understand how they behave now. This involves
collecting relevant metrics from our target systems under
normal load, which will provide a baseline for comparison.
Using this data, we measure exactly how much our systems
change in response to the attack.

If Attack Visualizations is enabled in the Gremlin web app,
the Gremlin UI will automatically chart CPU utilization for the
target system(s) when running a CPU attack. This will also
record utilization metrics immediately before and after the
attack. For other metrics, use your monitoring solution of
choice.

https://app.gremlin.com
https://app.gremlin.com
https://www.gremlin.com/docs/infrastructure-layer/common-errors-with-solutions/
https://www.gremlin.com/docs/infrastructure-layer/common-errors-with-solutions/
https://www.gremlin.com/docs/infrastructure-layer/attacks/#monitor-attacks-in-real-time

16

Chaos Engineering Adoption Guide

2. Create and Run the Experiment in Gremlin

The Gremlin web app provides two ways of running an
experiment: attacks and scenarios.

An attack is a method of injecting failure into a system, such
as consuming compute resources, shutting down a system,
or dropping network packets. Attacks can be scheduled or
executed ad hoc.

A Scenario is a collection of attacks that can be saved along
with a title, description, hypothesis, and detailed results.
Scenarios execute attacks in sequence, giving you greater
control over how your attacks are executed and allowing you to
recreate complex failures. You can use this to repeat the same
set of experiments and observe how your systems behave over
time. In addition to running Scenarios ad hoc, you can schedule
Scenarios to run automatically. After each Scenario run, you
can record your observations for comparison with other runs.

Once you’ve created your attack or Scenario and selected your
target(s), click the Run Attack or Run Scenario button to start
the attack. Be sure to record your metrics as the attack runs,
and if possible, monitor your relevant KPIs in real-time. How
is the target responding? Is it matching your hypothesis, or
behaving differently than you anticipated?

If the attack is causing unexpected problems with your
systems (e.g. they’ve become unresponsive), stop the test
using the Halt button in the top-right corner of the Gremlin
web app. It may take several seconds for the agent to receive
the signal and stop the attack. Make sure to record this result,
since even a failed chaos experiment is an important indicator
of reliability. In addition, if a Gremlin client loses connection to
the Gremlin Control Plane, it will automatically trigger a safety
mechanism that halts all attacks on the system.

https://www.gremlin.com/docs/infrastructure-layer/attacks/
https://www.gremlin.com/docs/scenarios/overview/
https://www.gremlin.com/docs/scenarios/scheduling-scenarios/
https://www.gremlin.com/docs/scenarios/scheduling-scenarios/

17

Chaos Engineering Adoption Guide

3. Analyze the Results

With the data gained from your experiment, begin forming
your conclusions by comparing your observations to your
hypothesis. Questions you want to ask might include:

•	 Did your systems behave as expected?

•	 If you had any failsafe systems, did they operate as
intended?

•	 What new bugs did you uncover as a result of the
experiment?

•	 How quickly did your alerting system detect the issue
and notify you? Is this time acceptable according to your
service level objectives (SLOs)?

•	 How well did your observability tools track your key
metrics? Are there any changes you would make to reduce
noise or collect more meaningful data? If we’re reproducing
a previous incident, how closely do these results match
what we experienced?

•	 Did your systems automatically return to a normal
state after the experiment, or did they require manual
intervention?

We want to approach these questions with the goal of not
just fixing issues, but preventing them from happening in the
future. Depending on the root cause, this might mean fixing
defects in our application, adding redundant infrastructure,
implementing automated systems and processes to detect
and handle failure, etc. Provide your engineers with the
observability data you collected and the insights you gained
from the experiment, as this will give them the resources to
make effective decisions for improving reliability.

18

Chaos Engineering Adoption Guide

4. Repeat Your Experiment

Once you’ve implemented a fix, repeat your experiment to
ensure that the fix addresses the underlying problem. If
your systems successfully withstand the attack, consider
increasing the magnitude of the attack (its severity). For
instance, if you used a CPU attack to consume 20% of
CPU time, increase the amount by another 20% in the next
experiment. You should also consider increasing the blast
radius, or the number of systems targeted in a single attack.
This is especially useful for testing clustered systems, auto-
scaling systems, and load-balanced systems. Continue to
refine your systems and experiments based on these results.

Automate Your Experiment

Once you’re confident in your ability to withstand the attack,
start running it on a regular basis as part of your normal
testing practices. With Gremlin, you can automate chaos
experiments by calling the Gremlin API. This will help ensure
that new changes don’t introduce regressions or cause new
reliability concerns.

Start by exporting your attack or Scenario as an API call. In
the Gremlin web app, open the attack or Scenario that you
just ran and scroll to the bottom of the screen. Click Gremlin
API Examples to view the fully formatted API call. You can
use this to execute your experiment from any tool capable of
making HTTP requests, including your CI/CD solution. You can
leverage this functionality to fully integrate Gremlin into your
pre-production pipeline, run chaos experiments alongside
your normal testing practices, and repeat the experiment after
deploying to production to verify reliability.

https://www.gremlin.com/blog/bring-chaos-engineering-to-your-ci-cd-pipeline/
https://www.gremlin.com/blog/bring-chaos-engineering-to-your-ci-cd-pipeline/
https://www.gremlin.com/community/tutorials/getting-started-with-gremlins-api/
https://www.gremlin.com/blog/bring-chaos-engineering-to-your-ci-cd-pipeline/

19

Chaos Engineering Adoption Guide

Repeating attacks also helps identify regressions. For example,
imagine we found a bug with our application that caused it to
consume all available disk space. We implemented a fix and
created alerting rules to notify us if the problem occurs again.
Instead of waiting for another incident to trigger the alert,
we can use a disk attack to proactively and continuously test
that our alerting process works, and that the original problem
hasn’t resurfaced.

Throughout this process, continuously monitor the results
of your experiments and compare your metrics to track your
progress. Are your KPIs trending in a positive direction? Are
you catching more defects in pre-production? Are your teams
becoming more comfortable with running GameDays and
responding to FireDrills?

Checklist

 	 Set up your observability and monitoring tools to 		
	 track key metrics

 	 Deploy Gremlin to your target systems

 	 Familiarize yourself with the Gremlin web app

 	 Organize and schedule a GameDay

 	 Run your first chaos experiment

 	 Make improvements to your applications and 		
	 systems based on your observations

 	 Run an attack or Scenario using the Gremlin API

 	 Automate the attack or Scenario as part of your
	 CI/CD pipeline

https://www.gremlin.com/blog/wont-get-fooled-again/

20

Chaos Engineering Adoption Guide

Now that we’ve successfully completed our first chaos
experiment, what’s next? How do we go from running one-off
experiments to fully ingraining Chaos Engineering into our
organization?

The key to early Chaos Engineering adoption is to play it safe
and start at a small scale. Instead of introducing the entire
engineering team to Chaos Engineering at the same time, start
with a single team. Ideally, this is a team overseeing mature
and reliable production systems. Using the processes detailed
in this document, run a low-magnitude chaos experiment
in your production environment following the GameDay
structure. Use this opportunity to find and fix problems
in these systems, as well as develop runbooks that your
engineering teams can use to respond to outages.

For example, a good starting point might be the team in charge
of a website. This team already understands the importance
of having reliable systems, and most likely has processes in
place for automatically handling or responding to incidents. An
initial chaos experiment might be to consume additional CPU
capacity on one web server to test whether it can maintain
performance, or if your golden signals (specifically latency and
throughput) suffer as a result. A more disruptive test might
involve shutting down one or more servers to test whether
your website can handle multiple concurrent system failures.

Once you understand how these systems respond to failure,
and that the team has a plan in place for responding to these
failures, begin running FireDrills. A FireDrill is a staged incident
designed to test both your teams and your runbooks against a
real-world outage. FireDrills help teams become more familiar
with the incident response process, which will reduce your
response times and mean time to resolution (MTTR) during a
real production incident. They’re also an opportunity to train
new employees, ensure they have access to the appropriate

Scale Up
Your Chaos
Engineering
Practice

https://www.gremlin.com/blog/testing-doesnt-stop-at-staging/
https://www.gremlin.com/blog/ensuring-runbooks-are-up-to-date/
https://www.gremlin.com/blog/ensuring-runbooks-are-up-to-date/#use-firedrills

21

Chaos Engineering Adoption Guide

tools, and that they can follow your runbooks. Schedule
monthly or quarterly FireDrills to periodically test your teams
and prevent them from becoming complacent.

Introduce Chaos Engineering to Additional Teams

Once you’ve proven success with one team, repeat the process
with other teams. The best place to start is with a team that
depends on the systems that you just tested. For example, if
you ran your first experiment with your database team, focus
on running a GameDay with your backend web team. Leverage
the existing line of communication between these two
teams by encouraging them to run joint GameDays and run
experiments across both functions. This also allows the more
experienced team to mentor the less mature team, which
helps the entire organization open up to Chaos Engineering.

Run Experiments in Production

If you’ve only been running chaos experiments in a pre-
production environment (such as a test or staging environment),
you aren’t extracting the full value of Chaos Engineering.
Experimenting in production is necessary because:

•	 Pre-production environments can’t accurately replicate
production. Even minor differences in architecture and
usage patterns can cause your applications to behave
drastically differently, and these differences are impossible
to fully reproduce.

•	 Emergent behaviors arise over time, especially in complex
systems. Not only can we not replicate these in pre-
production, but we can’t always predict them either.

•	 Production is what your customers are using. For this
reason alone, finding and fixing defects in production is
critical to the success of the business.

Schedule periodic
FireDrills to test your
incident response
processes and prevent
teams from becoming
complacent.

22

Chaos Engineering Adoption Guide

It’s natural for teams to be risk-averse when it comes to
experimenting in production, which is why we must approach
it carefully and strategically. There are several strategies for
testing in production that allow us to safely run experiments
without putting our entire production infrastructure and user
base at risk. These include:

•	 Blue-green deployments, where we run two identical
production environments side-by-side with one acting as a
failover.

•	 Canary deployments, where we contain new deployments
and experiments to a small subset of users and
infrastructure before rolling them out to everyone.

•	 Dark launches, where we copy user traffic from live systems
to separate systems. This lets us experiment using real-world
traffic, but without impacting the systems serving that traffic.

To learn more about these strategies and their benefits, read
our blog post on Testing Doesn’t Stop at Staging.

Continue to Leverage Automation

In the previous section, we explained how to automate your
chaos experiments as part of your testing process. Automating
your chaos experiments lets you continuously verify the
reliability of your applications and systems. As you scale up
your Chaos Engineering practice, automation will allow you to:

•	 Run more experiments in a shorter amount of time

•	 Repeat experiments consistently for every change

•	 Immediately raise alerts in case of a failure

•	 Trigger additional automation, such as a configuration
management tool or monitoring solution

https://www.gremlin.com/blog/testing-doesnt-stop-at-staging/

23

Chaos Engineering Adoption Guide

Not all experiments should be automated. Those that have
unacceptably high-risk or complexity—such as simulating
a region failure—will almost always need human oversight.
However, automating experiments that are lower-risk and
easier to execute allows you to continuously ensure reliability
without consuming valuable engineering time.

Final Checklist

 	 Introduce Gremlin into the workflow of a team in 		
	 charge of a mature, stable service

 	 Run a low-magnitude test on a production system

 	 Run a FireDrill

 	 Schedule recurring GameDays and FireDrills

 	 Introduce Gremlin to additional teams

 	 Reproduce a previous outage in production

 	 Integrate an automated attack with another tool 		
	 in your CI/CD pipeline, such as a monitoring or 		
	 alerting service

 	 Run continuous, automated experiments in 		
	 production

